When most people think of the ocean it seems too big to comprehend. We once believed that our smallness by comparison meant that our actions could never harm it in any way. The fact that the Marine environment is not easily accessible, means that it is a world that seems alien, surreal and distant to the wider public. Marine citizen scientists can bridge that distance with knowledge and enthusiasm. My personal experience working in the diving industry was that scuba diving enthusiasts come from all walks of life, excitement from learning, identification and record contributions are infectious to their friends and family. All have in common a superpower, breathing underwater (periodically at least) and a deep love for the ocean and its inhabitants.

Public scientific contributions give communities a chance to actively participate in protection and monitoring of their local environments. There have been numerous successful citizen science initiatives in Ireland, for example: Irish butterfly and bumblebee monitoring schemes and several schemes run by Bird Watch Ireland (Donnelly et al,2013). These initiatives benefit from plenty of volunteers due to easier access, smartphone apps and other automatic data management assists. In the marine environment a smartphone won’t last, you need a smart diver which is where Seasearch Ireland and its members come in.
Citizen Science data has been shown by studies to have the potential to benefit both ecological and biodiversity studies and contribute to monitoring programs as well as help in invasive species management (via early detection) (Delaney et al,2007), and identification of new Marine Protected Areas (MPAs). Donnelly et al,2013 found the potential within schemes such as Seasearches Adopt a dive site program, to address major constraints in the continuous monitoring in subtidal areas of interest. The main ones being time, finance and availability of experts. Many studies such as that of Delaney et al,2007 compared accuracy of trained volunteers versus specialists and found it to be comparable.
Continual surveys create experts who will hone and improve their skills each time, training provided and identification guides which are continually improved upon, all add power to the data. Availability of data, data validation techniques, and survey design methods are all details which are important to any scientist using the data (Burgess et al,2016), if the survey is to be carried out again, for example, to prove a change has occurred in the environment it must be carried out the same way for comparison. Measures of variability must be assessed, and final statistics are always delivered with a probability of error and an expected range for results of a repeat survey/experiment.
None of this of course is any fun at all, well not for me anyway, statistics was my worst module, a necessary evil. Preliminary assessment of the responses I have had with the quiz suggest extremely responsible recording and a high level of knowledge. This week I will be writing the final report and holding off on the statistics in the hope for a few more responses. Please look out for the final report, hope to see you all underwater sometime soon,
Lisa Nihill.
References
Burgess, H. K., DeBey, L. B., Froehlich, H. E., Schmidt, N., Theobald, E. J., Ettinger, A. K., … Parrish, J. K. (2017).” The science of citizen science: Exploring barriers to use as a primary research tool”. Biological Conservation, 208, 113–120. doi: 10.1016/j.biocon.2016.05.014. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0006320716301951 (accessed 16/04/2020)
Delaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2007). “Marine invasive species: validation of citizen science and implications for national monitoring networks”. Biological Invasions, 10(1), 117–128. doi:10.1007/s10530-007-9114-0. Available at: https://link.springer.com/article/10.1007/s10530-007-9114-0 (accessed 17/04/2020)
Donnelly, A., Crowe, O., Regan, E., Begley, S., & Caffarra, A. (2013). “The role of citizen science in monitoring biodiversity in Ireland”. International Journal of Biometeorology, 58(6), 1237–1249. doi:10.1007/s00484-013-0717-0. Available at: https://link.springer.com/article/10.1007/s00484-013-0717-0 (accessed 19/04/2020)